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ABSTRACT

Despite widespread availability of radar-derived and optical imagery at similar timescales and spatial
resolutions, a number of issues complicate the creation of combined radar and optical datasets.
These challenges include coregistration across satellite missions; post-processing radar imagery to
correct for ground geometry and incidence angle; and a lack of reliable labeled data to pair with
imagery for class-dependent research objectives. Addressing these concerns using the Descartes
Labs geospatial analytics platform, this paper presents the SEN12TS dataset, a public resource
that includes radiometric terrain corrected synthetic aperture radar backscatter measurements;
interferometric synthetic aperture radar coherence and phase layers; local incidence angle and
ground slope values; multispectral optical imagery; and decameter-resolution land cover data.
Moreover, sensed imagery is available in timeseries: Within a Sentinel-1, Sentinel-2, and labeled
land-use/land-cover image triplet, radar-derived imagery is collected at four timesteps 12 days
apart. For the same spatial extent, up to 16 image triplets are available across the calendar year of 2020.

The SEN12TS dataset consists of image triplets over six agro-ecologically diverse areas of interest:
California, Iowa, Catalonia, Ethiopia, Uganda, and Sumatra. In total, 246,400 triplets are produced at
10m resolution over 31,398 256-by-256-pixel unique spatial tiles for a total size of 1.69 TB. Two
use cases are also demonstrated for the SEN12TS dataset. The first transforms radar imagery into
enhanced vegetation indices by means of a generative adversarial network, and the second tests
combinations of input imagery for cropland classification. The SEN12TS dataset is hosted by the
Radiant Earth Foundation, where it is available for download at https://doi.org/10.34911/
rdnt.9qh1mb under a non-commercial CC BY-NC 4.0 license.

Keywords Sentinel-1 · Sentinel-2 · deep learning · data fusion · image timeseries · self-supervised learning

1 Introduction

In the field of remote sensing, large amounts of data, better access to computational resources, and recent methodological
advances have allowed researchers to develop reliable applications for a variety of tasks [Zhu et al., 2017]. However,
progress is contingent upon large, high-quality datasets, which due to the high costs of labeling, are fewer and less
studied than widely used datasets for classic computer vision tasks [Cheng et al., 2016]. Publicly-available labeled
datasets, such as those listed in Rieke [2022] and those organized for standardized access in Yeh et al. [2021], provide
significant value for researchers looking to develop new remote sensing methodologies or derive new insights from
existing imagery.

As remotely-sensed data become more accessible, researchers are increasingly exploring the benefits of data fusion –
the process of combining multiple satellite imagery products, often across sensing domains, to extract otherwise hidden
information. In this space, there have been many efforts to link radar and optical imagery, and in a few cases, produce
public datasets. Of particular note are the SEN1-2 [Schmitt et al., 2018] and SEN12MS [Schmitt et al., 2019] datasets,
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Table 1: Existing combined SAR-optical imagery datasets
Dataset Num.

Image
Sets

Dataset
Size

Image
Size

Reso-
lution

Data
Sources

Data Layers Description Reference

SEN12MS 541,986 421
GB

256-by-
256

10m Sentinel-1,
Sentinel-2,
MODIS

SAR vv + vh,
13 MSI bands,
land cover
classification

Paired S1/S2 images are
combined with MODIS
land cover classifications
covering all inhabited con-
tinents during all meteoro-
logical seasons

Schmitt
et al.
[2019]

SEN1-2 564,768 44 GB 256-by-
256

10m Sentinel-1,
Sentinel-2

SAR vv, RGB
bands

S1 single polarization im-
ages are paired with S2
RGB bands over a global
extent

Schmitt
et al.
[2018]

So2SAT
LCZ42

400,673 56 GB 32-by-
32

10m Sentinel-1,
Sentinel-2

SAR vv + vh,
13 MSI bands

S1/S2 imagery pairs are
collected over 42 urban re-
gions (with 10 smaller ar-
eas) across the globe and
are assigned local climate
zone classes, verified by
domain experts.

Zhu et al.
[2019]

SARptical 10,108 1 GB 112-by-
112

∼1m TerraSAR-
X, Ultra-
CAM

SAR single
polarization,
RGB bands

Pairs of 1m SAR imagery
and 20cm optical imagery
are collected over Berlin,
Germany. Images are
coregistered with the 3D
position of the center of
the image pair.

Wang
and Zhu
[2018]

SEN12TS 246,400 1686
GB

256-by-
256

10m Sentinel-1,
Sentinel-2,
USDA
CDL,
SIGPAC,
ESA

SAR vv +
vh, InSAR
coherence
+ phase, 12
MSI bands,
land cover
classifications

S1-derived timeseries of
radiometric terrain cor-
rected backscatter and In-
SAR coherence and phase
layers are combined with
S2 images and land cover
labels. Image triplets
cover portions of Cali-
fornia, Iowa, Catalonia,
Ethiopia, Uganda, and
Sumatra.

This
paper

which present paired Sentinel-1 (S1) synthetic aperture radar (SAR) backscatter measurements and Sentinel-2 (S2)
optical images in >500,000 locations across the world; these paired datasets provide the inspiration for this current
work. A non-exhaustive overview of other large-scale (>10,000 image pairs) combined SAR-optical datasets is shown
in Table 1.

A number of challenges exist in the production of combined SAR-optical datasets. First, all imagery must be tightly
coregistered: registration differences will degrade the usefulness of the dataset [Zhu et al., 2022]. Second, raw
SAR imagery requires substantial processing to reduce noise and amplify contained signals. Imagery that is both
geometrically corrected (controlled for ground geometry) and radiometric terrain corrected (controlled for incidence
angle) is more valuable to the end user. Third, there are few high-quality labeled datasets to attach to large imagery
datasets. While global land-use/land-cover (LULC) maps do exist, these products often have hectometer spatial
resolutions coarser than relevant on-the-ground length-scales; are informed by limited ground truth; exist for a single
year or period of time; and/or significantly disagree among themselves as to predicted land cover classes. Accordingly,
a combined SAR-optical dataset with precise co-registration; geometric and radiometric terrain corrected SAR imagery;
and attached high-quality, decameter LULC maps will provide substantial utility to remote sensing researchers.
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Table 2: SEN12TS dataset overview
Area of Interest Number of Tiles Number of Image Triplets Size (GB)

California 3151 47,660 326.5

Iowa 5292 47,902 327.4

Catalonia 4127 47,280 323.0

Ethiopia 5828 47,670 325.9

Uganda 7173 47,676 326.1

Sumatra 5827 8212 56.8

Total 27,698 246,400 1685.7

To this end, this paper presents the SEN12TS dataset, which addresses the above-mentioned challenges and introduces
the following novel features. For each image triplet in the dataset, S1-derived radar imagery is provided at a timeseries1

of four timesteps: t′ = t..t − 3, where t′ = t corresponds to the time at which the S2 optical image is collected.
These timesteps are 12 days apart, representing the time between successive passes for a single S1 satellite. Along
with vh and vv SAR backscatter layers, interferometric SAR (InSAR) coherence and phase layers are included at all
four timesteps. The S1-derived imagery is augmented with two layers representing the local incidence angle and the
Shuttle Radar Topography Mission (SRTM)-derived ground slope values [NASA Jet Propulsion Laboratory, 2013].
Shadow/layover masks are appended to S1 images, while scene classification layers and cloud masks are appended
to S2 images. Labeled LULC classifications specific to the area of interest (AOI) are then added. Together, these 19
S1 layers, 14 S2 layers, and 1 LULC layer constitute the imagery contained within a SEN12TS image triplet in the
dataset. To capture surface characteristics across the entire 2020 calendar year, up to 16 image triplets – 4 per season –
are generated for each spatial extent included in the dataset, subject to imagery availability.

Imagery is collected over 6 agro-ecologically distinct AOIs – California, Iowa, Catalonia, Ethiopia, Uganda, and
Sumatra. LULC classifications from the United States Department of Agriculture (USDA) Cropland Data Layer
(CDL) are added to imagery set in California and Iowa [USDA National Agricultural Statistics Service, 2020]; for
imagery collected over Catalonia, LULC classifications from Sistema de Información Geográfica de Parcelas Agrícolas
(SIGPAC) are included [Government of Catalonia (GENCAT), 2021]; for imagery collected over Ethiopia, Uganda, and
Sumatra, LULC classifications are provided by the ESA 2020 WorldCover Map v100 [Zanaga et al., 2021].

Table 2 presents an overview of the imagery contained in the SEN12TS dataset. In general, imagery is collected over
randomly selected tiles in the AOIs until approximately 320 GB of imagery is available for each region. However, so
few S2 images with minimal cloud cover are available across Sumatra that collecting imagery over the entire AOI only
results in 56.8 GB of imagery.

Lastly, two applications are presented as initial explorations of the SEN12TS dataset. The first translates S1 radar
imagery into enhanced vegetation index (EVI) predictions by means of a modified generative adversarial network
(GAN), while the second compares LULC classification performance in California for different configurations of S1
and S2 imagery.

2 Data Background

The SEN12TS dataset combines timeseries of S1-derived imagery, S2 multispectral imagery, and LULC classifications
in imagery triplets. Imagery is collected over unique spatial extents called tiles; these tiles have a 10m pixel resolution
and size of 256-by-256 pixels. Figure 1 presents the distributions of saved imagery within the 6 AOIs contained in
the SEN12TS dataset; colors of the figure dots correspond to the number of images available for the tile (see Figure 1
caption). The 6 AOIs contained in the dataset are selected to capture a degree of global diversity in land cover patterns.
Among the US-based AOIs, California2 offers a well-studied, highly developed agricultural region that contains a wide
variety of crop types. Iowa provides a region that is likewise developed and studied with much fewer distinct crop
types. Catalonia also contains similarly advanced agricultural practices, albeit with different climate and cropping

1The inclusion of imagery timeseries in SEN12TS is the source of the TS abbreviation in the SEN12TS dataset title.
2The California AOI covers a portion of the California Central Valley south of Sacramento and north of Bakersville; it does not

cover the entire state and is named as such for concision.
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Figure 1: Locations of saved imagery in the 6 SEN12TS AOIs: (a) California, (b) Iowa, (c) Catalonia, (d) Ethiopia, (e)
Uganda, and (f) Sumatra. Light blue dots indicate between 13-16 images available per tile; dark blue dots indicate
between 9-12 images available per tile; yellow dots indicate between 5-8 images available per tile; and orange dots
indicate between 1-4 images available per tile. All images are projected to their local Universal Transverse Mercator
(UTM) zone. Background imagery is provided by Bing Aerial.

patterns. These three AOIs contain high-quality, government-produced LULC maps that can be combined with imagery
to explore a variety of classification-based research questions.

The following three AOIs – Ethiopia, Uganda, and Sumatra – are regions that have received comparatively less attention
from remote sensing and deep learning researchers. Agricultural practices in these areas differ from those in the US
and Europe: Plots are smaller, irrigation is less prevalent, and management of the land is less mechanized and more
labor-intensive. In Uganda and Sumatra in particular, equatorial climates ensure persistent cloud presence throughout
much of the year, a reality that increases the need for radar-based monitoring solutions. To focus on agriculturally
intensive areas in Ethiopia, imagery is only collected in the states of Amhara and Tigray, parts of the country that
constitute the highly-cropped Ethiopian highlands.

2.1 Sentinel-1

Two polar orbiting satellites, equipped with C-band SAR (5.404 GHz) sensors, comprise the European Space Agency’s
(ESA) Sentinel-1 mission [Torres et al., 2012]. These satellites have global repeat periods of 6-24 days and collect
cloud-free imagery both day and night regardless of weather. S1 satellites can operate in one of three imaging modes:
interferometric wideswath (IW), extended wideswath, and stripmap. The main mode, IW, contains a 250km swath with
decameter (10-20m, depending on the processing) pixel resolution.

Multiple products are derived from S1 sensed data, including Single Look Complex (SLC) and Ground Range Detected
(GRD) backscatter measurements. SLC products are provided in zero-Doppler slant-range geometry, include a single
look in each dimension, and consist of complex samples that preserve phase information [Zebker, 2017]. In contrast,
GRD products consist of focused SAR data that have been multilooked and projected to ground range using an Earth
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ellipsoid model [European Space Agency (ESA), 2021]. GRD products have approximately square pixel tiling and
reduced speckle at the cost of losing phase information and coarser spatial resolution. Backscatter products from the
Sentinel-1 mission contain vh and vv polarized images.

To reduce the impact of ground geometry on SAR data, backscatter products can be normalized by either the ground
area (σ0) or the illuminated area projected in the look direction (γ0) [Small et al., 2004]. Here, σ0 images are considered
to be geometric terrain corrected, while γ0 images are considered to be radiometric terrain corrected (RTC). RTC
images control for local incidence angle, allowing for standardized information extraction on sloped terrain and across
different satellite tracks.

Successive satellite passes generate data that can be used to produce Interferometric Synthetic Aperture Radar (InSAR)
measurements, which are effective in measuring changes in land cover over time. InSAR data are often presented as
interferograms – maps that quantify relative ground-surface change by comparing signal coherence and phase across two
SAR images covering the same spatial extent. Because of their ability to highlight changes in land cover, interferograms
have significant potential for various land monitoring purposes; however, a scarcity of publicly available interferograms
means that this image type is less frequently utilized compared to other S1 derived products.

2.2 Sentinel-2

Since March 2017, two identical polar-orbiting satellites have collected optical imagery as part of the ESA Sentinel-2
mission [Drusch et al., 2012]. The satellites are 180 degrees out of phase, have an orbital swath of 290km, and are
equipped with a multispectral instrument (MSI) payload that samples 13 spectral bands. Of these 13 bands, four have
a 10m spatial resolution (blue, green, red, near infrared), six have a 20m spatial resolution (red edge 1, red edge 2,
red edge 3, red edge 4, short-wave infrared 1, short-wave infrared 2), and three have a 60m spatial resolution (coastal
aerosol, water vapor, cirrus). At the equator, the S2 mission has a revisit period of approximately 5 days, ensuring
frequent collection of multispectral imagery; however, clouds can reduce the availability and utility of these images,
especially in tropical areas with persistent cloud cover. In correcting S2 imagery to bottom-of-atmosphere reflectance
values – i.e. to the L2A processing level – the cirrus band is removed, leaving 12 spectral bands. At the L2A level, S2
images are also produced with a scene classification layer that indicates the pixelwise presence of clouds, shadows,
vegetation, desert, or snow; this scene classification layer can be used to derive additional cloud, shadow, or snow
masks for the corresponding optical imagery. Additional information on the L2A processing algorithm, including the
corresponding classes for the scene classification raster values, is provided at European Space Agency (ESA) [2022a].

2.3 Land-Use/Land-Cover Label Sources

The following subsections detail the sources of LULC labels contained within the SEN12TS image triplets. Relationships
between the raster values and land cover types are detailed in a supplementary spreadsheet provided alongside the
dataset.

2.3.1 United States Department of Agriculture Cropland Data Layer

The United States Department of Agriculture (USDA) Cropland Data Layer (CDL) is a raster, georeferenced, crop-
specific land cover data layer created annually for the continental United States using moderate resolution satellite
imagery and extensive agricultural ground truth [USDA National Agricultural Statistics Service, 2020]. The CDL is
produced at 30m resolution and contains 116 discrete land cover classes.

Early applications of the CDL estimated crop acreage and yield; however, the product is now used more widely,
including to measure cropping frequency, create cultivated layers, and monitor disasters such as hurricanes and wildfires
[Sandborn et al., 2019]. Between 2008 and 2016, the number of annual peer-reviewed journal articles or conference
proceedings available through Google Scholar that utilized the CDL increased by 600% [Lark et al., 2017]. An
independent assessment of the CDL found that the product is highly accurate and suitable for annual land cover
applications [Luman and Tweddale, 2008].

The 2020 CDL is resampled via nearest-neighbor interpolation to 10m and used as the LULC layer for all imagery
triplets in California and Iowa.

2.3.2 Sistema de Información Geográfica de Parcelas Agrícolas

Sistema de Información Geográfica de Parcelas Agrícolas (SIGPAC) combines satellite imagery and cadaster data to
compile a LULC dataset for the entirety of Catalonia, Spain [Government of Catalonia (GENCAT), 2021]. SIGPAC
contains 170 LULC classifications at the parcel level and has been produced every year since 2015. SIGPAC LULC
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labels have been combined with satellite imagery for a number of research objectives, including irrigation mapping
[Gao et al., 2018], land abandonment modelling [Corbelle-Rico et al., 2012], and semantic segmentation of cropland
[Pedrayes et al., 2021].

The SIGPAC 2020 dataset is downloaded from Government of Catalonia (GENCAT) [2021]; plot polygons are then
rasterized to a 10m resolution. The rasterized LULC layer is used for all image triplets in Catalonia.

2.3.3 European Space Agency WorldCover 2020 Map V100

The European Space Agency (ESA) recently published the WorldCover 2020 Map v100, a global land cover map
[Zanaga et al., 2021]. With its 10m resolution, the map joins another recent product from ESRI and Impact Observatory
[Karra et al., 2021] to offer the highest resolution of any publicly available global LULC map. To create the ESA LULC
map, researchers generated labeled pixels using GEOWIKI. These training labels are paired with S2 L2A multispectral
and S1 RTC backscatter timeseries. Cloudy, saturated, or shadowed S2 pixels are removed using the scene classification
layer of the L2A product. A gradient boosted decision tree algorithm (CatBoost) is then used for model training
[Dorogush et al., 2017]. As a final step, auxiliary datasets such as OpenStreetMaps [OpenStreetMaps Contributors,
2021], Global Human Settlement Layer [Corbane et al., 2020, 2021], and Global Surface Water Explorer [Pekel et al.,
2016] are used in the determination of expert rules for improving prediction quality.

The ESA WorldCover 2020 Map V100 achieves an overall accuracy of 74.4% across the 11 classes simulated on the
holdout validation tiles. Given the map’s extent, spatial resolution, and accuracy, its LULC classifications are used for
all image triplets in Ethiopia, Uganda, and Sumatra – AOIs without region-specific mapping products of their own.

2.4 Dataset Collection using the Descartes Labs Platform

All images contained within the SEN12TS dataset are generated and processed by Descartes Labs. Using the Descartes
Labs platform, images are organized into imagery triplets, defined as a grouping of imagery containing: a single
timestep’s (time t′ = t) S2 spectral bands and scene classification map; a four timestep timeseries (time t′ = t..t− 3)
of RTC S1 backscatter measurements; a four timestep timeseries (time t′ = t..t− 3) of InSAR interferogram coherence
and phase measurements; local incidence angle and SRTM-provided ground slope information; and auxiliary land cover
classifications. A maximum difference in collection time of three days is specified for S1-derived and S2 imagery
at time t′ = t. A single imagery triplet covers one tile, defined as a 256-by-256-pixel square at 10m resolution in
the local Universal Transverse Mercator (UTM) coordinate representation. All layers composing an imagery set are
precisely coregistered for the tile in question; layers with a native resolution larger than 10m are upsampled using
nearest neighbor resampling.

Corrected to the L2A processing level, all twelve S2 spectral bands and the scene classification map at time t′ = t
are included in an image triplet. To filter out cloudy scenes, images are limited to only those from 100km-by-100km
S2 granules with less than 10% aggregate cloud cover. The Descartes Labs S2 cloud mask product is then used to
determine cloud coverage at the pixel level. While this product provides an industry-competitive S2 cloud layer, it, like
all cloud masks, is imperfect. Highly reflective pixels covering buildings or snow-covered landscapes are sometimes
misclassified as clouds, while diffuse cirrus clouds are sometimes missed.

The SAR-derived timeseries contain four timesteps 12 days apart, with the latest timestep (time t′ = t) falling within
three days of the collection day of the S2 image; accordingly, the first timestep in the timeseries occurs approximately
36 days before the collection day of the paired optical bands. Collecting image timeseries in twelve-day increments
ensures that all SAR-derived layers within an imagery set are taken from the same orbital track.

RTC SAR backscatter layers (γ0) are created by combining terrain corrected backscatter layers (σ0) and RTC factors.
Here, σ0 layers are generated on a burst-by-burst basis using geocoded SLCs as an intermediate product [Calef et al.,
2021]. The correction factors are created using SAR metadata, digital elevation maps, and orbit information with the
Sentinel Application (SNAP) toolbox [European Space Agency (ESA), 2022b]; they are unique for each ground-surface
pixel and orbital track, and do not contain any radar imagery. As S1 satellites fly in a 250m radius orbital tube, static
RTC factors can be used for image correction. The correction factors also include a mask indicating whether σ0

measurements fall within shadow or layover areas – regions that cannot be properly imaged due to steep surrounding
slopes and the sensing geometry of the radar instrument.

Interferogram coherence and phase measurements are included for each of the four timesteps in the imagery set. Here,
interferograms are created by using SAR data taken 12 days apart and are associated with the date of the second SAR
collection: An interferogram created from SAR data at timesteps t′ = t and t′ = t− 1 is associated with time t′ = t,
where timesteps are given in 12-day increments. Interferograms are generated using a Gaussian kernel with a spatial
wavelength of 80m (corresponding to a spatial resolution of ∼50m). The resultant coherence and phase layers are
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Figure 2: Statistics on imagery availability by (a) tile and (b) season for the six SEN12TS AOIs.

posted at 20m, which is then upsampled via nearest neighbor resampling to 10m to align with the optical and backscatter
layers.

Imagery triplets are only included in the SEN12TS dataset if the S1 and S2 images each contain fewer than 1% of
pixels deemed invalid, due to either cloud cover, shadow, or layover 3. To inform users as to which pixels are valid
for each image, shadow/layover and cloud masks are included as the last layers in the S1 and S2 imagery stacks,
respectively. The shadow/layover masks appended to the radar-derived S1 imagery contain 0s where the pixel falls
within the generated SAR shadow/layover mask and 1s over valid pixels; the cloud masks appended to the S2 imagery
contains 0 over pixels deemed cloudy or shadowed per the utilized cloud shadow mask and 1s over valid pixels. No
post-processing is performed on any of the sensed layers; users can test their own methods of post-processing – e.g.
despeckling – with the SEN12TS dataset.

To evaluate land cover change over a period of time, multiple image triplets are collected for the same tile, subject
to imagery availability. Here, the calendar year is divided into four seasons: winter, stretching from December 1st to
February 28th; spring, stretching from March 1st to May 31st; summer, stretching from June 1st to August 31st, and fall,
stretching from September 1st to November 30th. Imagery collection is limited to 4 triplets per tile per season, resulting
in a maximum of 16 image triplets per tile. All imagery is collected over the 2020 calendar year.

Figure 2 presents regional statistics for the SEN12TS imagery: (a) displays the number of tiles (i.e. unique spatial
extents) that contain a set quantity of image triplets; (b) shows how these images are distributed by season. Figure 2(a)
demonstrates that California and Catalonia AOIs contain more tiles with a higher number of image triplets. Due to
persistent cloud cover limiting the number of available optical images in Uganda and Sumatra, most tiles in these AOIs
offer few valid image triplets.

3 SEN12TS Dataset

The following section discusses the structure, novelties, and caveats of the SEN12TS dataset.

3Imposing an invalid pixel limit of 0% results in too few available triplets in Uganda and Sumatra, tropical regions with persistent
cloud cover.
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Table 3: Layer organization within S1, S2, and labeled land-use/land-cover (LULC) image triplets.
Layer S1 Image S2 Image Labeled Image

0 SAR vh, time t′ = t Coastal aerosol, time t′ = t LULC classification

1 SAR vv, time t′ = t Blue, time t′ = t

2 InSAR coherence, time t′ = t Green, time t′ = t

3 InSAR phase, time t′ = t Red, time t′ = t

4 SAR vh, time t′ = t− 1 Red edge, time t′ = t

5 SAR vv, time t′ = t− 1 Red edge 2, time t′ = t

6 InSAR coherence, time t′ = t− 1 Red edge 3, time t′ = t

7 InSAR phase, time t′ = t− 1 Near infrared, time t′ = t

8 SAR vh, time t′ = t− 2 Red edge 4, time t′ = t

9 SAR vv, time t′ = t− 2 Water vapor, time t′ = t

10 InSAR coherence, time t′ = t− 2 Short-wave infrared 1, time t′ = t

11 InSAR phase, time t′ = t− 2 Short-wave infrared 2, time t′ = t

12 SAR vh, time t′ = t− 3 Scene classification

13 SAR vv, time t′ = t− 3 Cloud mask

14 InSAR coherence, time t′ = t− 3

15 InSAR phase, time t′ = t− 3

16 Local incidence angle

17 SRTM slope

18 Shadow/layover mask

3.1 Dataset Structure

The SEN12TS dataset is organized by AOI and imagery type. Each AOI contains /s1/, /s2/, and /labels/ folders that hold
the S1, S2, or labeled LULC images respectively. S1 and S2 images are saved with the same file name, differentiated by
their S1 or S2 parent folder. S1/S2 image file names are saved the following format:

lat_AAA_lon_BBB_s1date_YYYY-MM-DD_s2date_YYYY-MM-DD_s1track_CCC_s1lookpass_EF.tif

where AAA and BBB are the latitude and longitude, respectively, of the center of the tile; YYYY-MM-DD refers to the
year, month, and day of the S1 and S2 imagery collection dates at time t′ = t, which will differ by up to three days;
CCC is the unique S1 orbit number on which the S1 image was collected; E refers to the look direction of the S1
satellite, either R (right) or L (left); and F refers to the S1 orbital pass, either A (ascending) or D (descending).

In contrast, one labeled LULC image is included for each unique tile in the dataset. As up to 16 paired S1/S2 images
exist for a tile, fewer labeled LULC images exist than S1/S2 images; the same LULC image should be used for all
S1/S2 images covering a specific tile. Labeled LULC images adhere to a similar file naming convention to the S1 and
S2 images:

lat_AAA_lon_BBB_date_2020_lulc_label.tif

where AAA and BBB are the latitude and longitude, respectively, of the center of the tile, values that can be used to link
the labeled LULC layer to S1/S2 images over the same spatial extent. All images are saved as georeferenced TIF files.

Table 3 presents the organization of layers within the image triplets. S1 image timesteps are 12 days apart, corresponding
to a 36-day difference between the first (time t′ = t) and last (time t′ = t− 3) sets of radar imagery within an image
triplet. S1 image stacks are saved as 32-bit floats. SAR backscatter layers are presented in decibels (dB) with a physical
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range between -40 dB and 30 dB; InSAR coherence is presented as a fraction between 0 and 1; InSAR phase is presented
as a value between -π and π; and the local incidence angle and SRTM slope values are presented as degrees. In contrast,
S2 and labeled LULC images are saved as 16-bit signed integers. Optical layers in the S2 stack contain values between
0 and 10,000 – representing the range between zero and full reflectance – while values in the scene classification layers
range between 0 and 11. Labeled LULC images are also saved as 16-bit signed integers, containing region-specific
raster values corresponding to each regions’ LULC layer data source.

3.2 Dataset Novelties

The SEN12TS dataset is unique in six distinct ways from other publicly available combined SAR-optical datasets:

1. Four-timestep timeseries of SAR-derived images (RTC backscatter and InSAR phase and coherence) are
collected for each imagery set. Moreover, multiple images for the same tile are contained within the SEN12TS
datasets, thus providing coverage of the same spatial extent at multiple times during the year.

2. InSAR coherence and phase timeseries are included within each imagery set.

3. RTC backscatter layers (γ0) are provided. RTC allows for reliable information extraction on sloped surfaces,
along with comparison of SAR backscatter measurements from different orbital tracks.

4. Before radiometric terrain correction, backscatter layers (σ0) are derived from SLC products, instead of
GRD products. Derivation of backscatter measurements from SLC data ensures finer spatial resolution (10m
compared to 20m) and a larger dynamic range (12-bit instead of 8-bit). Furthermore, RTC backscatter layers
that are derived from GRD products can experience pixel offsets between scenes in the same swath and/or low
backscatter at tile edges; these issues are avoided in the SLC-derived γ0 layers in the SEN12TS dataset.

5. Shadow/layover and cloud masks specify invalid pixel locations that may interfere with applications of the
dataset. Moreover, S2 scene classification layers provide an assessment of which pixels contain clouds,
shadows, vegetation, desert, water, or snow; these scene classification layers can then be used to derive
additional cloud, shadow, or snow masks.

6. Decameter resolution LULC maps are included within each imagery set. By adding raster layers from the
USDA CDL, SIGPAC, or the ESA 2020 WorldCover Map v100 to the dataset, sensed imagery is combined
with reliable, highly descriptive raster layers that can be used for a variety of classification-dependent use
cases.

3.3 Dataset Caveats

While multiple steps are taken to minimize the amount of cloud cover in the SEN12TS dataset – limiting optical imagery
collection to S2 imagery with less than 10% aggregate cloud cover; using Descartes Labs cloud masks to remove
clouded and shadowed pixels; and only saving an image triplet if its S2 image contains less than 1% cloud cover –
some S2 images still contain cloud artifacts. These artifacts are most frequent in imagery collected over Uganda and
Sumatra, as these are tropical regions with persistent cloud cover. To quantify the likelihood of a cloud artifact, 100 S2
images are randomly selected from each AOI and then inspected to determine the number that contain minimal and
non-minimal cloud artifacts; these results are presented in Table 4. Generally, minimal cloud cover is deemed to be
cloud cover/cloud shadow that affects approximately 1% of the image or less; non-minimal cloud cover refers to cloud
artifacts that occupy more than 1% of the image, or cirrus cloud cover that distorts the natural image coloration. For
reference, Figure 5 in Appendix A contains images showing what qualifies as minimal and non-minimal cloud cover.
While these cloud artifacts most frequently occur in small clusters of pixels, they nevertheless could pose problems for
end-users if unaccounted for.

The cloud mask products used for the SEN12TS dataset creation also contain errors of commission. In these instances,
highly reflective buildings and highly absorptive surfaces (typically standing water) are sometimes mistaken for cloud
and cloud shadow, respectively. While these incorrectly masked pixels seem occur quite rarely within the dataset, it is
an issue worth mentioning.

Additionally, users may encounter issues when using S1 backscatter measurements from different orbital tracks for
change detection. Applying the radiometric terrain correction to backscatter measurements from different tracks
should align γ0 values to within 0.1-0.2 dB if there have been no changes to the ground geometry; however, grouping
backscatter observations by orbital track is recommended for maximum sensitivity to change [Schmidt et al., 2020].
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Table 4: Number of S2 images containing cloud artifacts out of a random sample of 100 images per region.
Area of Interest Zero Cloud Artifacts Minimal Cloud Artifacts Non-Minimal Cloud Artifacts

California 100 0 0

Iowa 94 4 2

Catalonia 98 2 0

Ethiopia 97 2 1

Uganda 83 14 3

Sumatra 77 19 4

Lastly, Figure 1 reveals that the availability of imagery is highly dependent on the collection geometries of the S1
and S2 satellites4. If both S1 and S2 satellites pass regularly over a sub-area of an AOI, tiles within that sub-area will
contain more images; conversely, tiles in sub-areas with less frequent satellite coverage will contain fewer images.
Separate from issues of image availability, certain highly sloped (see north-central Ethiopia, Figure 1(a)) and highly
urban sub-areas (see Barcelona area, Figure 1(c)) of the AOIs contain very little imagery. Here, steep surfaces create
shadow and layover effects in the radar imagery, while highly reflective urban setting are misidentified as clouds. As
these sub-areas often contain images with more than 1% of pixels that reside within the shadow-layover mask or images
with more than 1% of pixels mislabeled as clouds, they are underrepresented in the final SEN12TS dataset.

4 Dataset Applications

The following section contains two deep learning applications of the SEN12TS dataset.

4.1 Enhanced Vegetation Index Predictions Using Pix2Pix

Since their introduction in 2014, researchers have deployed many types of Generative Adversarial Networks (GANs) for
remote sensing tasks [Goodfellow et al., 2019]. Among GANs that perform paired image transformations, the Pix2Pix
architecture [Isola et al., 2017] has proven robust in applications such as LULC classification [Lin et al., 2017, Wang
et al., 2018], change detection [Lebedev et al., 2018], and radar-to-optical translation [Enomoto et al., 2018, Zhang
et al., 2020, Reyes et al., 2019]. To explore the applicability of the SEN12TS dataset, a GAN based on the Pix2Pix
architecture is developed to translate SAR input imagery into EVI predictions. This GAN is termed the SAR2VI. Using
the near infrared (NIR), red, and blue spectral bands provided in the SEN12TS dataset, EVI is derived per Eq. (1):

EV I =
2.5 ∗ (NIR−RED)

NIR+ 6 ∗RED − 7.5 ∗BLUE + 10000
(1)

Image triplets from the SEN12TS dataset are used to train the SAR2VI in the following manner: The 16 S1 bands
associated with an image (vh and vv backscatter, and InSAR coherence and phase for 4 timesteps, t′ = t..t− 3) are
given as inputs to the SAR2VI, while EVI layers are derived from the image triplet’s S2 bands. Generated images are
then compared with derived EVI layers to produce the losses that drive model training. EVI is predicted instead of the
normalized difference in vegetation index (NDVI), as NDVI tends to saturate over dense vegetation and the SAR2VI
generates EVI predictions with lower average pixel errors.

The SAR2VI is implemented as introduced in Isola et al. [2017], with one important modification: An L1 crop loss is
added during training, proportional to the absolute difference between target values and predictions over cropland. This
loss incentivizes accurate predictions over cropland, as is required in agricultural monitoring applications. For model
training and testing, a portion of the SEN12TS imagery in California is selected; the USDA CDL included in these
image triplets is used to determine the L1 crop loss. Random selections of 3004 and 752 image triplets constitute the
training and testing datasets, respectively.

Figure 3 displays relevant layers showing the radar-optical translation process. Column A presents vh backscatter in the
red and green bands of the images and vv backscatter in the blue band, both at time t′ = t; accordingly, pixels with
high vh values look yellow, while pixels over land cover types that do not change the polarization of the radar signal

4Although not affecting this dataset, which includes only imagery collected during the 2020 calendar year, S1 image availability
has been limited since December 23, 2021 due to power issues on the S1B satellite.
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A B C D E

Figure 3: Column A presents SAR backscatter at time t′ = t, with the vh layer in both red and green bands and the vv
layer in the blue band; Column B presents single band images containing InSAR coherence at time t′ = t; Column C
presents SAR2VI-generated EVI predictions; Column D presents Sentinel 2-derived EVI measurements; Column E
presents true-color RGB images of the landscapes. Rows 1-4 present images collected around time t= September 16,
2020; August 14, 2020; April 1, 2020; and October 18, 2020, respectively. All image settings are in California.
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Figure 4: Network architecture adapted from Rustowicz et al. [2019] for LULC classification.

appear blue. Column B shows InSAR coherence – a measure of the consistency of the scattering processes across two
SAR collects – also at time t′ = t, with low coherence pixels appearing darker than their high coherence counterparts.
In this column, surface land cover types that demonstrate little change over time, such as building or pavement, will
display high coherence; land cover types with changing surface geometry, such as vegetation with leaves or branches
that can move by many C-band wavelengths between passes, will induce different scattering patterns and exhibit lower
coherence.

In the four displayed scene settings, alignment exists between the vh backscatter layers in Column A, the pixels with
low coherence values in Column B, and the S2 derived EVI layer, presented in Column D. For reference, Column E
presents the settings in true color RGB. Column C shows the SAR2VI-produced EVI predictions. Comparing between
Column C and D, general agreement is observed between the predictions and target EVI values: high and low EVI
regions are predicted as such, albeit with a loss of edge sharpness.

4.2 Crop Classification

The SEN12TS dataset is also used to test crop classification models in California with the USDA CDL providing target
labels. Here, input data consist of only imagery from tiles that have 16 available image triplets. The classification model
is then trained on these S1 and S2 timeseries to predict a single land cover class for each pixel in the tile.

A random selection of 160 tiles with all 16 image triplets compile the training dataset. The unique land cover classes
present across these images are then assessed: Labels from the 10 most frequently occurring classes are kept; all labels
not contained in these 10 classes are ignored. The images are then split into into 64 pixel sub-images – each 256-by-256
image in the SEN12TS dataset yields 16 of these sub-images. All sub-images without any labeled pixels in the 10 most
frequent USDA CDL classes are removed, leaving a total of 1817 paired sub-images in the training set. This process
is repeated for 40 separate, randomly selected tiles to create the test dataset, which after filtering contains 454 paired
sub-images worth of imagery.

Classification is performed with a model first introduced in Rustowicz et al. [2019], adjusted for input imagery with 16
timesteps and spatial dimensions of 64x64 pixels; this adjusted network architecture is shown in Figure 4. Here, input
imagery was cropped to 64x64 pixels to accommodate GPU memory constraints. The classification model contains
separate modified UNets for processing the S1 and S2 imagery; when both S1 and S2-derived imagery are present
during training, the separate network outputs are concatenated before the multilevel perceptron (MLP) and prediction
layers. Three configurations of input data are tested: The first uses only S1 input imagery (4 bands per timestep), the
second uses only S2 input imagery (12 bands per timestep), and the third uses both inputs as is seen in Figure 3. The
following parameters are applied for all training: a batch size of 4; an Adam optimizer with a learning rate of 1e-3, a
gradient clipnorm of 3 and a gradient clipvalue of 0.5 [Kingma and Ba, 2015]; and a categorical cross-entropy loss
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Table 5: Top-K accuracy for crop classification models.
Top K Accuracy (%)

K=1 K=3 K=5

S1 imagery only 58.2 81.8 90.6

S2 imagery only 62.4 84.4 94.1

Combined S1 + S2 64.9 85.9 94.4

Table 6: Top-1 prediction confusion matrix for combined S1 and S2 classification model.
Predicted

Almonds Pistachios Grapes Grassland Alfalfa Fallow Walnuts Wheat
Winter Tomatoes Developed Total

A
ct

ua
l

Almonds 381,335 10,131 36,637† 18,488 5370 34,327 11,965 7908 8301 21,361 535,823*

Pistachios 8970 147,155 8667 3718 204 46,686‡ 2339 1731 2649 6816 228,935*

Grapes 43,465† 12,524 116,983 3969 4173 7924 12,250 1354 4532 7948 215,122*

Grassland 2502 1146 9921 49,530 2046 13,496 935 4519 220 6925 91,240

Alfalfa 2106 1439 1416 4362 59,741 2575 924 4353 4574 2498 83,988

Fallow 771 1721 1328 1,5271 183 84,625 141 3173 7647 5658 120,518**

Walnuts 2260 429 5636 574 370 1099 12,553 608 427 1435 25,391**

Wheat
Winter 719 524 954 6811 1148 14,504‡ 111 24,573 6473 3266 59,083

Tomatoes 252 139 829 142 568 3727 64 1347 44,398 988 52,454

Developed 5200 988 1494 2663 1155 5315 1032 2241 1221 26,435 47,744**

Total 447,580* 176,196* 183,865* 105,528 74,958 214,278** 42,314** 51,807 80,442 83,330** 1,460,298

that is only applied over pixels classified as one of the 10 predicted classes. This loss is weighted for class balance per
[King and Zeng, 2001], so that the models do not learn to overpredict the more frequently occurring classes. All input
imagery is standardized bandwise to a mean of 0 and standard deviation of 1, per the training dataset.

Table 5 presents top-K accuracies for the three tested model configurations for the 10-class LULC classification task.
Here, results indicate that the model trained on S2 imagery outperforms the model training on S1 imagery, and that
model trained on combined S1 and S2 imagery produces the highest test set accuracies. This combined model achieves
a top-1 accuracy of 64.9%, a top-3 accuracy of 85.9%, and a top-5 accuracy of 94.4%.

Table 6 presents the top-1 prediction confusion matrix for the combined S1 and S2 model. This table contains the
predicted and actual classes for the entire test dataset; the crop types associated with the 10 most frequently occurring
classes constitute the row and column names.

Table 6 shows that the combined S1 and S2 model underpredicts the top-3 most frequently occurring classes – almonds,
pistachios, and grapes (highlighted with *) – while generally overpredicting the more underrepresented classes, such
as fallow, walnuts, and developed (highlighted with **). Certain pairs of classes are also more frequently confused
than others: the model mistakes grapes for almonds (and vice versa) in approximately 10% of predictions for those
classes (see † highlights). Similarly, approximately 20% of actual pistachio and winter wheat pixels are each predicted
as fallow (see ‡ highlights). These results are presented as an initial investigation of how the SEN12TS dataset can be
used for LULC classification; a full exploration of classifier behavior on the SEN12TS dataset is left for future work.

5 Conclusion

This paper presents a novel dataset of combined Sentinel 1-derived (S1) radar imagery, Sentinel-2 (S2) optical imagery,
and land-use land cover (LULC) labels over six unique global settings (California, Iowa, Catalonia, Ethiopia, Uganda,
and Sumatra), all collected during 2020. The dataset is named SEN12TS, due to 1) the inclusion of radar imagery
timeseries in every image triplet, and 2) inclusion of up to 16 images covering the same spatial extent in the dataset.
The radar imagery in the SEN12TS dataset consists of radiometric terrain corrected (RTC) synthetic aperture radar
(SAR) backscatter layers and interferometric synthetic aperture radar (InSAR) coherence and phase layers; for an image
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triplet, radar images are collected at four timesteps 12 days apart (t′ = t..t− 3). Radar imagery timeseries are matched
with 12 S2 spectral bands and a scene classification layer collected at time t′ = t (defined as within 3 days of the S1
pass at time t′ = t). For all settings, local incidence angle measurements and ground slope information are appended
to the S1 images. All image triplets also contain labeled LULC raster layers. In the United States, the United States
Department of Agriculture (USDA) Cropland Data Layer (CDL) provides the land cover labels; in Catalonia, labels are
derived from Sistema de Información Geográfica de Parcelas Agrícolas (SIGPAC); in Ethiopia, Uganda, and Sumatra,
labels are extracted from the European Space Agency (ESA) 2020 WorldCover Map v100. The entire SEN12TS dataset
is collected, processed, and downloaded using the Descartes Labs platform.

Two applications of the SEN12TS dataset are also presented. The first predicts enhanced vegetation indices (EVI) given
radar imagery inputs; here, a modified Pix2Pix generative adversarial network (GAN) [Isola et al., 2017] is trained and
deployed over a subset of the image triplets collected in California. For the second application, a land cover classifier
is developed using combinations of S1 imagery, S2 imagery, and the USDA CDL, also for a subset of the SEN12TS
data collected over California. For the classification model that intakes both Sentinel-1 and Sentinel-2 imagery, a top-1
accuracy of 64.9% is achieved.

The SEN12TS dataset is hosted by the Radiant Earth Foundation, where it can be accessed at the following link:
https://doi.org/10.34911/rdnt.9qh1mb. The dataset is made publicly available with a non-commercial CC
BY-NC 4.0 license.
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Appendix A: Examples of Cloud Cover in the SEN12TS Dataset

For reference, Figure 5 presents examples of minimal and non-minimal cloud cover of Sentinel-2 images in the
SEN12TS dataset. The approximate prevalence of these types of cloud cover in each area of interest can be found in
Table 4.

(c)

(a) (b)

(c)

(d)

(e)

(f)

Minimal Cloud Cover Non-minimal Cloud Cover

Figure 5: Example Sentinel-2 images in the SEN12TS dataset containing minimal and non-minimal cloud cover.
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