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ABSTRACT
To extract information at scale, researchers are increasingly ap-
plying semantic segmentation techniques to remotely-sensed im-
agery. While fully-supervised learning enables accurate pixelwise
segmentation, compiling the exhaustive datasets required is often
prohibitively expensive, and open-source datasets that do exists are
frequently inexact and non-exhaustive. In this paper, we present
a novel and generalizable two-stage framework that enables im-
proved pixelwise image segmentation givenmisaligned andmissing
annotations. First, we introduce the Alignment Correction Network
to rectify incorrectly registered open source labels. Next, we demon-
strate a segmentation model – the Pointer Segmentation Network
– that uses corrected labels to predict infrastructure footprints de-
spite missing annotations.We demonstrate the transferability of our
method to lower quality data sources by applying the Alignment
Correction Network to correct OpenStreetMaps building footprints,
and we show the accuracy of the Pointer Segmentation Network in
predicting cropland boundaries in California. Overall, our method-
ology is robust for multiple applications with varied amounts of
training data present, thus offering a method to extract reliable
information from noisy, partial data.
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Figure 1: Types of label noise present in open source data.
Building footprints are the class of interest

1 INTRODUCTION
Processing remotely-sensed imagery is a promising approach to
evaluate ground conditions at scale for little cost. Algorithms that in-
take satellite imagery have accurately measured crop type [12],[9],
cropped area [6], building coverage [15] [14], urbanization [1], and
road networks [4] [16]. However, successful implementation of
image segmentation algorithms for remote sensing applications
depends on large amounts of data and high-quality annotations.
Although some global ground truth datasets like OpenStreetMaps
(OSM) offer large amounts of labels for use at no cost, their an-
notations suffer from multiple types of noise [10] [2], including:
Missing or omitted annotations, defined as objects being present in
the image and not existing in the label [10]; misaligned annotations
occur when annotations are translated and/or rotated from their
true position [13]; and incorrect annotations – annotations that do
not directly correspond to the object of interest in the image. Figure
1 presents examples of these types of label noise. For applications
such as measuring building or field area that are useful in down-
stream analyses of wealth, crop yield and more, high noise levels
decrease the ability to segment images successfully.

To address issues of misaligned and omitted annotations, and to
extract information from imperfect data, we present a simple and
generalizable method for pixelwise image segmentation. First, we
address annotation misalignment by proposing an Alignment Cor-
rection Network (ACN). With a small number of images and human
verified ground truth annotations, the ACN learns to correct mis-
aligned labels. Next, the corrected open source annotations are used
to train the Pointer Segmentation Network (PSN), a model which
takes in a point location and identifies the object containing that
point. Learning associations from a representative point is a widely
acknowledged method of object detection [3]. By pointing out an
object of interest, our network ignores other instances that may not
have corresponding annotations, therefore preventing performance
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Figure 2: Summary of our two-stage approach to segment
from noisy annotations. Stage 1: The ACN uses an image (xi )
and label (yai ) with a single misaligned annotation to predict
a realigned annotation v̂ai . Random shifts between ±10 pix-
els are applied tovai to obtainyai . Thenetwork is trainedwith
a small set of images (x) and verified ground truth annota-
tions (v). Stage 2: A large noisy training set is first realigned
with the ACN. Realigned, incomplete annotations are used
for supervision. The PSN uses selected points from available
instances, xi and v̂i to learn segmentation.

degradation caused by annotation-less instances. Our two-step ap-
proach does not require a custom loss to handle noisy labels. While
our approach cannot replace large amounts of careful annotations,
it can complement existing open source datasets and algorithms,
reduce the cost of obtaining large amounts of full annotations, and
allow researchers to extract information from imperfect datasets.
For details about our work and related literature, please see the full
version of our paper here: https://arxiv.org/abs/2005.13180

2 METHODS
In this work, we propose a novel two-stage approach to learn seg-
mentation from noisy labels. See Figure 2. Binary cross-entropy
loss is used for all networks. Both ACN and PSN use a baseline
architecture (lightUNet) shown in the full version of our paper,
albeit with the number of input channels modified.

2.1 Alignment Correction Network
Given inputs of an image xi and a label yai containing one mis-
aligned instance a, the ACN outputs a label υ̂ai containing the pre-
dicted, realigned annotation. When multiple misaligned instances
are present in an image, the instances are corrected independently.
We choose this approach for two reasons: it allows instances within
an image to have varying degrees of translation error and also

enables the network to be robust to incomplete labels with missing
instances. A small dataset of images (x) and carefully verified la-
bels (υ) is used to train the ACN. Noisy labels yai are generated by
applying random shifts to vai .

2.2 Pointer Segmentation Network
This network learns to segment an image using onlym available an-
notations. The PSN takes as inputs an image xi and a single channel
of points specifying selected instances to be segmented; it outputs a
segmentation mask only for the selected instances. We specify the
fraction of instances to be used for training using a parameter α ,
where α is the number of selected instances divided by the number
of available instances. By including a single channel containing the
points pi (α ), our PSN segments only instances that are associated
with the points. This approach offers two benefits: first, learning is
simplified to specify instances of interest; second, the network can
be trained without custom the losses to handle noise. The model is
trained by randomly picking α for every image in each epoch. At
inference time, all instances of interest are specified using points.

To sequentially test the two-stage approach, the ACN is used to
correct a training dataset that is then inputted to the PSN for object
segmentation. A longer discussion of our methodology is available
in our full report.

3 DATA
Three separate datasets (all described below) are used to train and
test ACN and PSN performances. During training and testing, we
only use images that contain labels.

The Aerial Imagery for Roof Segmentation (AIRS) dataset is
used to establish baseline performances for both the ACN and
PSN. The AIRS dataset covers most of Christchurch (457km2), New
Zealand and consists of orthorectified aerial images (RGB) at a
spatial resolution of 7.5 cm with over 220,000 building annotations;
the images are split into a training set Tset and a validation set
Vset [5]. Other than basic filtering to remove images with <10%
building cover, we fully preserve the training and validation sets.

OSM provides open-source building footprints for many parts
of the world; unfortunately, label quality is highly heterogeneous.
In order to test the performance of the ACN on these incomplete
and misaligned building footprints, we pair OSM annotations for
Kenya [7] with selected DigitalGlobe tiles from Western Kenya (a
box enclosed by 0.176 S, 0.263 S, 34.365 E, and 34.453 E) and closer
to Nairobi (a box enclosed by 1.230 S, 1.318 S, 36.738 E, and 36.826
E). We generated human verified ground truth annotations for 500
of the image patches.

Crop maps and decameter imagery is used to demonstrate the
flexibility of the PSN. The California Department of Water Re-
sources provides a Statewide Cropping Map for 2016 [11]; we pair
this shapefile with Sentinel-2 satellite imagery to predict cropland
parcels [8].

4 RESULTS
For all model testing, we report the mean intersection over the
union (mIOU), defined as the intersection of the predicted and
true label footprints divided by the union of the same footprints,
averaged across the dataset.
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4.1 Alignment Correction Network
We evaluate the performance of the ACN on the AIRS Vset . We gen-
erate random translations between ± 10 pixels for the xy-axis and
apply them to ground truth AIRS annotations, resulting in unique
translation shifts for each object in an image. The introduction of
noise through random translation yields a baseline mIOU of 0.55.
The shifted annotations together with the images are fed into the
ACN, and the corrected annotations are compared to the true anno-
tations to drive the learning process. For the first set of tests, we re-
port the mIOU on Vset when varying amounts of Tset data are used
for training; random translations between ± 10 pixels are applied to
all objects in Vset . When the ACN is trained with 800, 400 and 240
images, the corresponding mIOUs on all images in Vset are 0.81,
0.77 and 0.67 respectively, compared to the baseline of 0.55. This
suggests that the ACN performs better when more images are used,
but also that it can learnwith only a couple hundred training images.

Table 1: mIOU before and after
ACN realignment, trained on 400
images.

mIOU
Translation Shift
(± pixels)

Before
ACN

After
ACN

0 to 5 0.63 0.81
5 to 10 0.40 0.73
10 to 15 0.26 0.46
15 to 20 0.18 0.28

Using theACNmodel
trained with 400 im-
ages and random trans-
lation shifts between ±
10 pixels, we next eval-
uate the robustness of
the ACN to varying
levels of translation
shifts. Table 1 shows
mIOU before and after
ACN correction for dif-
ferent ranges of trans-
lations shifts in Vset .
Across all translation
shifts, the ACN realigns shifted annotations, even for translations
larger than those in the training dataset (>10 pixels).

4.2 Pointer Segmentation Network
The performance of the PSN is compared against a baseline model
(lightUNet) for segmention of every building instance in AIRS Vset .
Both models are trained on partial but well-aligned images from
AIRS Tset . Table 2 reports the performance of the lightUNet and
the PSN with varying fractions of selected annotations (α ): As α de-
creases, performance of the PSN remains robust, indicating that the
network still learns the segmentation task despite missing annota-
tions.

Table 2: mIOU for all buildings in
AIRS Vset .

mIOU
α PSN lightUNet

1 0.9 0.85
0.7 0.89 0.53
0.5 0.87 0.18
Het. 0.87 0.71

Table 2 compares the
performance of the PSN
when building centroids
are used as inputs.
When randomly gen-
erated (non-centroid)
points within the build-
ing footprint are used
with α = 0.7, we ob-
serve a drop in mIOU
of the PSN from 0.89
to 0.83. This suggests
that annotators should

Figure 3: Annotations fromPSN and lightUNetmodelswhen
trainedwith α = 0.7. Predictions aremade for all building in-
stances in the image and are compared to the ground truth.

strive to extract points near the center of buildings to ensure better
segmentation outcomes. Additionally, we evaluate how both net-
works handles heterogeneous (Het.) amounts of label completeness
by sampling α from a random uniform distribution between 0 and
1; α is resampled for each image during every training epoch. Here
we find that the PSN suffers no significant performance degrada-
tion for a random distribution of α . Figure 3 shows some outputs
of PSN and lightUNet models when both are trained with α = 0.7.
Although both networks are trained with missing annotations, gen-
erated annotations from the PSN appear more visually accurate.

4.3 Sequential Testing
We next use the AIRS dataset to evaluate the performance of our
two-stage methodology where the ACN and PSN are trained and
tested sequentially. Using Tset , we establish two training datasets
for the sequential process: T1, containing misaligned labels gener-
ated from the true Tset ; and T2, containing ACN-corrected T1 labels.

Table 3: Dataset noise and performance
of segmentation architectures.

mIOU
T1: Misaligned train data 0.57

PSN (trained on T1) 0.54
lightUNet (trained on T1) 0.17

T2: ACN-corrected train data 0.81
PSN (trained on T2) 0.79

lightUNet (trained on T2) 0.74

TheACNmodel
trained on 400
images generates
T2. The noise present
in both training
datasets is cap-
tured by themIOU
listed in Table
3. The PSN and
lightUNet mod-
els are trained
with T1 and T2
usingα = Het , an
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Figure 4: Hand-labelled ground truth annotations, OSM
annotations and ACN-corrected annotations. The ACN is
trained on 400 images fromWesternKenya andNairobi, and
improves label alignment despite the noisier training data.

identical implementation of label withholding to that described in
the previous section. The trained models are used to segment Vset
images; we compare predicted annotations to the true annotations
to attain the performance metrics reported in Table 3. The PSN
performs significantly better than the lightUNet when trained on
either misaligned labels (T1) or ACN-corrected labels (T2). Again,
we find that with incomplete labels, regardless of alignment quality,
the PSN outperforms the lightUNet. Moreover, in both training
configurations, PSN mIOU performance nears that of the training
dataset. As a result, we conclude that the PSN is able to predict ob-
ject extents at a similar accuracy to that which exists in the training
dataset.

4.4 ACN Application: Realignment of OSM
Annotations

To confirm the performance of our realignment method on noisier
images and labels, we tested the ACN on OSM building polygons
in Kenya, a dataset containing considerable amounts of label mis-
alignment. Of the 500 human-verified ground truth image labels
generated for Kenya, we use 400 to train the ACN and 100 to validate.
The extent of noise in the OSM labels is measured by comparing
the labels to the human-verified ground truth labels: We calculate
mIOUs of 0.30 and 0.31 for the train and validation data respec-
tively. OSM training labels are used to train the ACN and the trained
model is ran on the 100 validation labels. A 50% improvement in
mIOU from 0.31 to 0.47 is observed on the 100 validation images.
Figure 4 shows a sampling of ACN-corrected OSM annotations for
images in the validation dataset. Overall, we find that the ACN is
able to correct misaligned OSM annotations both in rural and urban
regions. In rural Western Kenya, where buildings tend to be smaller,
the ACN shifts OSM footprints to better align with the buildings.

We observe that the noisier image quality makes it more difficult
for the ACN to identify extremely small buildings. Sometimes when
no buildings are present the model does not predict a correction.
In more urbanized Nairobi, the ACN also improves the alignment
of OSM annotations, albeit with some failure cases. Overall, our
results suggest that the ACN is transferable to noisy datasets.

4.5 PSN Application: Cropland Segmentation

Table 4: mIOU for all
field boundaries in the
test set.

mIOU
α PSN lightUNet

1 0.92 0.75
0.75 0.91 0.69

We also apply the PSN to the task
of cropland segmentation using
Sentinel-2 imagery and a 2016
California cropping map. Similar
to previously described tests, the
performance of the PSN and ligh-
tUNet in recreating field bound-
aries is measured for different
values of α . At all fractions of
available training data shown in
the table, the PSN outperforms
the lightUNet. After 40 training
epochs, the PSN is able to predict all field boundaries for the test set
across all values of α ; in contrast, the performance of the lightUNet
degrades significantly as field boundaries are withheld. Here, we
find that the PSN can accurately predict cropland extents using
only a subset of fields, and does not require the comprehensive
set of training polygons that would be necessary for traditional
segmentation networks.

5 CONCLUSION
In this paper, we present a novel and generalizable two-stage seg-
mentation approach that addresses common issues in applying deep
learning approaches to remotely-sensed imagery with unreliable
ground truth data. First, we present the Alignment Correction Net-
work (ACN), a model which learns to correct misaligned instance
annotations. We test the ACN on a set of alignment errors, includ-
ing misalignment of the AIRS dataset and existing, substantial mis-
alignment errors within the OSM Kenyan building footprint dataset.
Overall, we find that the ACN significantly improves annotation
alignment accuracy. We next introduce the Pointer Segmentation
Network (PSN), a model which reliably predicts an object’s extent
using only a point from the object’s interior. For all segmentation
tasks and testing configurations – those which vary the fraction of
available training annotations and those which change the location
of the training point – the PSN outperforms a baseline segmentation
model. Lastly, we sequentially link the ACN and PSN to demon-
strate the ability of the combined networks to accurately segment
objects having learnt from misaligned and incomplete training data.
Taken together, we envision our proposed networks providing value
to the community of researchers and scientists looking to extract
information from widely-available satellite imagery and unreliable
ground-truth datasets.
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