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Abstract

In this report, we use high resolution imagery and utility-
reported data to determine what image features correspond
to multiple levels of residential electricity consumption. To
do so, we implement a cycle-consistent generative adver-
sarial network; the output of the generative network pro-
vides visual understanding about the types of development
influence consumption. Results from our work indicate that
larger, more visually distinct buildings and roads are the
features most correlated with high electricity consumption.
To a lesser extent, increased contrast in nearby fields — pos-
sibly indicating higher levels of agricultural management —
is also linked to higher consumption. We also discuss two
extensions made to our generative model. First, we expand
on our baseline binary network to create a conditional gen-
erative model. Next, we explore methods of using generated
images to aid an electricity consumption classification net-
work. Here, we discuss the techniques we tested and their
performance relative to the baseline classifiers.

The contributions of this paper are threefold. First, we
increase domain knowledge about the types of features that
correlate with electricity consumption by providing visu-
ally interpretable masks. Second, we introduce a cycle-
consistent, conditional generative adversarial network ar-
chitecture that can be used for unpaired image translation
among a set of classes. Lastly, we discuss the utility of
generated imagery in pursuing other research questions,
namely the development of a network that classifies satel-
lite imagery according to electricity consumption.

1. Introduction

Electricity services have historically been provided
through grid extension efforts, whereby a centralized elec-
tricity network is expanded to connect new customers.
However, in developing countries, the cost of grid extension
increases significantly when connecting customers distant
from the central grid; typically found in highly rural set-
ting, these customers tend to consume less electricity than
those connected previously [4]. As a result, electric util-
ities struggle to recover the cost of grid extension for re-
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mote customers, making it harder to provide electricity ac-
cess throughout the country.

Despite the structural challenges associated with elec-
trification efforts, improvements in distributed energy sys-
tems, mobile payment platforms, and grid data manage-
ment have driven recent gains in increasing electricity ac-
cess. Governments and entrepreneurs are exploring new
pathways for electrification such as solar home systems and
minigrids, as well as redoubling investments in traditional
grid extension, all in an effort to improve livelihoods and
build sustainable institutions for delivering electricity ser-
vices. An area that remains a challenge in this space is de-
termining the relevant characteristics of an area that influ-
ence its electricity consumption. If utilities can understand
what types of development drive consumption, this knowl-
edge can help planners design generation and distribution
systems to deliver power at the lowest cost. Moreover, in
grid-connected regions where reliable, frequent consump-
tion data is unavailable, either because this information has
been lost on its way back to the utility, or because interested
parties do not have access to proprietary records, an under-
standing of the features that influence consumption can help
researchers and analysts infill consumption estimates.

Over the past decade, there has been tremendous growth
in the volume of and access to global satellite imagery,
growth which has been fueled by the deployment of
cheaper, faster satellites into orbit [7]. Remote sensed
data has been leveraged to understand drivers for economic
growth and development, which in turn is correlated with
electricity consumption [16], [10]. By pairing satellite im-
agery, available over a wide swath of the globe, with more
sparse electricity consumption averages, we can discern re-
lationships between the two data sources in order to under-
stand consumption patterns for images where labels are un-
available [1].

Independently, generative adversarial networks (GANs)
are becoming increasingly popular for exploring the exact
nature of a decision boundary in classification problems
[5]. Traditional GANs alternate training a classifier and a
discriminator in order to generate images indistinguishable
from those in a target set. Here, we use a GAN variant —
a CycleGAN [17]- to implement unpaired image-to-image



translation between classes of images that correspond to
various levels of monthly electricity consumption. Gener-
ative networks allow us to create visual features that are
both important in differentiating between images in differ-
ent electricity consumption classes and also general across
an entire set of images, unlike insights gained from image-
specific, classification network heatmap analysis.

In this project, we help answer the question of what fea-
tures are present in high and low electricity consumption
images. Presented visually, this understanding will increase
domain knowledge about what types of development corre-
spond to higher electricity consumption. Furthermore, we
attempt to show the application of generated imagery to the
field of electricity system planning. Computer vision re-
searchers have made significant progress in the image gen-
eration field in recent years, however these advances have
mostly found application in related, academic contexts. If
these advanced techniques can be applied to another tech-
nical domain, our work can provide justification for further
knowledge transfer across disciplines.

2. Related Work

Multiple projects have leveraged satellite images to an-
swer various questions on land use, road quality and con-
sumption expenditure: by linking sparse ground-truth with
abundant imagery, researchers can extrapolate trends in ex-
isting data to areas where labelled data exists [13], [3]. Jean
et al. combine Google maps daytime images (provided by
DigitalGlobe), nighttime lighting, and survey data to esti-
mate poverty for multiple African countries [9]. High res-
olution daytime images were used to train a model to pre-
dict nighttime lights as measured by DMSP-OLS; features
extracted from the last layer of the model were then used
to estimate household expenditure or wealth. Results from
this paper suggest that there are important features about
economic development which can be gleaned from remote
sensed data. Further work on this topic has incorporated ar-
tificially generated imagery to improve the poverty predic-
tions [11]. While these following results are inconclusive,
this recent report indicates that researchers believe gener-
ated images can help a classifier network better generalize
to unseen landscapes.

GANSs can be used to identify and visualize features
that impact classification decisions, as they allow a user to
inspect how the addition of certain feature vectors cause
an image to fall on the other side of a decision boundary
[15]. A certain subset of GANs deal with unpaired image-
to-image translation, whereby an image from one class is
changed into another class without the generation network
knowing exactly what the transformed image should look
like; the network is trained to pick out general characteris-
tics of the sets of images in question, and apply these char-
acteristics to an image to transform from it from one class to

another. We use the CycleGAN variant introduced in [17] to
learn features salient in classifying low and high electricity
consumption images.

Separately, [14] and [12] propose methods to stabilize
GAN training, techniques which have proved valuable in
dealing with satellite imagery that often has a high ratio of
background to foreground image features. Further exten-
sions in the image-to-image translation space include [&]
and [6], papers which introduce the concept of conditional
GANSs; these networks take in a target class as an addi-
tional input and generate an image in this class accordingly.
In generating images in multiple electricity consumption
classes, we recreate this conditional GAN framework.

3. Data

Average monthly electricity consumption data for this
report comes from Kenya Power and Lighting Company
(KPLC), the sole utility operating in Kenya. We use re-
ported consumption quantities from 2013 in order to pair
the consumption with available satellite imagery taken dur-
ing the same year. Satellite imagery for this project comes
from DigitalGlobe. The DigitalGlobe imagery has 3 bands
(RGB) and a resolution of approximately 0.48 meters per
pixel. All images are clipped to a height and width of
450m, as this spatial extent corresponds to the resolution
of the nighttime light measurements provided by DMSP-
OLS, data used to create a baseline electricity classification
model. Only image patches that contain residential electric-
ity consumers with measured monthly data — as determined
by coordinates associated with each the consumers — are
considered as model inputs. At this point, we have a set of
450m by 450m images, each with an associated consump-
tion metric, calculated as the average of all monthly con-
sumption quantities for every consumer with reported data
in the image. It is important to note that not all households
in the image have an electric connection. In addition, as we
only have a sample of consumption for the country, there
are electricity customers in the image for whom we don’t
have consumption data.

We further pare down the image set with coupled con-
sumption quantities by considering only image patches
with consumption that falls in set electricity consump-
tion classes. Here, in determining the most appropriate
class boundaries, we first evaluated the relative distribution
of average monthly consumption quantities for all image
patches with reported monthly consumption. We constrain
the low-consumption class to contain 2915 images with
consumption between 3 kWh/month and 30 kWh/month;
the medium-consumption class consists of 2874 images
that contain residential consumers that average between
40 kWh/month and 70 kWh/month; the high-consumption
class contains 2914 images with consumption between 90
kWh/month and 1000 kWh/month. Here, the three con-
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Figure 1: Binary CycleGAN architecture. Input images of
class X and class Y are given as inputs; the model alter-
nately trains the generators G and F and the discriminators
Dy and Dy in order to generate better fake images ¥ fq%. and

T fake-

sumption classes correspond to consumption values likely
to be found in rural, periurban, and urban settings. The
high-consumption and low-consumption classes are used in
the binary CycleGAN implementation, while images from
all three classes are used in the conditional CycleGAN im-
plementation. A training ratio of 0.7 is used for all three
classes.

4. Methodology
4.1. Binary CycleGAN Implementation

We adapt the structure for our binary CycleGAN from
the original CycleGAN implementation in [ 7]. The model
architecture for this implementation is shown in Figure 1.
Here, images of class X (low consumption) and Y (high con-
sumption) are given as inputs to generators G and F, respec-
tively. The generated images (Y fake, T fake) are both sent to
their respective discriminators (Dy and Dy), where they are
compared to real images in class X and Y to quantify the
adversarial loss. The generated images are also sent back
through the opposing generator (F and G, respectively) to
recreate images of the original class. The recreated images
(Yrec» Trec) are compared to the original x and y images
to attain the cycle-consistency loss. During training, these
losses — the adversarial loss and the cycle consistency loss
— are used to update the weights in the discriminator and
generator.

However, in order to achieve the best model perfor-
mance, a couple key changes to the baseline are necessary.
In training and validation, all images are randomly cropped
to a size of (472,472,3), as the model generators and dis-
criminators have difficulty processing images at the origi-
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nal size of (930,930,3). We also implemented a number of
custom losses not present in the original CycleGAN base-
line. Along with the adversarial loss (Lgqy,, generator and
discriminator loss combined) and the cycle consistency loss
(L¢yc), both explained in [17], our network enforces a class
maximizing loss and an illumination loss. The class maxi-
mizing loss ensures that in transforming an image across the
decision boundary, generated images are perceptibly differ-
ent from their original inputs; in practice, this loss works
as a helpful counterbalance to the cycle consistency loss,
similar to how the two parts of the generator and discrimi-
nator losses act adversarially. The model's final loss, the il-
lumination loss, ensures that any global change in the pixel
values is kept minimal. Because electricity consumption
is closely intertwined with development, overall image hue
can mirror electricity consumption: images that contain low
consumption are often more rural and therefore more green,
while images with higher consumption are more urbanized
and less green. Therefore, the illumination loss prevents the
CycleGAN from merely increasing or decreasing the green-
ness to generate alternate-class images, instead incentiviz-
ing local, distinct image changes. All losses are shown in
equation form below:

Lgan(Gv Dy, X, Y) =M * Ey~pdam(y) [ZOQ(Dy(y))]+

)\2 * Emwpdam(z) [log(l - Dy(G(x))]
(1)

Leye(G B X Y) = X3 % (Bonpygra (o) [[F(G(2)) — 2]+

By pana ) IG(F(Y)) = yl])
2

Lcmar(GaFv X, Y) =—Ag % (]E-chpdata(l‘)HG(x) - x”"_

Eypiara ) 1F () = yll)
3)

Lillum(G’Fv X’Y) = )‘5 * (Z Ex’\‘pdata(x)“G(‘r) - 1’|]+

> Eyparatn [[F @) = yl])
“4)

Ltotal :Lgan(Ga Dya X7 Y) + Lgan(Fv Dxa Xa Y)+
Leye(G,F,X,Y) 4+ Lemaz (G, F, X, YY)+ (5)
Lillum(G7 Fa X7 Y)

In practice, we found that loss weights of \; =10, Ao =1,
A3 =10, Ay =5, A5 = 66.8 allow for the best performance.

We also used other GAN training tips to reach model sta-
bility, including: label switching at a rate of 0.2; using soft



labels in the discriminator; adding Gaussian noise to the dis-
criminator inputs; inserting random noise to convolutional
layers; and applying Leaky ReLUs as activation functions
in the discriminators and generations. With these changes
to the original CycleGAN baseline, we achieved stable gen-
erator outputs after approximately 15 training epochs.

4.2. Conditional CycleGAN Implementation

As an extension of our binary CycleGAN model, we
next experiment with a conditional CycleGAN. We design
this model to contain three class: low, medium, and high
consumption classes, with the monthly consumption ranges
given in the Data section. This conditional CycleGAN is
similar to other multiclass CycleGAN such as StarGAN
[2]; however, a key differentiation is that we tune our con-
ditional CycleGAN for image translation in a continuous
space with flexible class definitions. In previous conditional
CycleGANS, the hard definitions are used for class distinc-
tions e.g. a horse vs a zebra vs a lion. In our case, class def-
initions are soft, meaning that the user can specify binning
thresholds for a high, medium and low electricity consump-
tion classes.

The three-class conditional CycleGAN (hereafter, Tricy-
cleGAN) model uses the same architecture as the binary
CycleGAN with one important change: along with the input
images (z, y,2), the model takes in a label that represents the
desired class of the transformed image. For instance, image
x would be paired with labels n, or n., indicating that x
should be transformed into either y¢qke OF Zfqke. Identical
to the binary CycleGAN, only two generators are required
for the three different cycles: an Gy, generator that trans-
forms an image from a lower consumption class to a class
with higher consumption one, and a Fgown generator that
performs the opposite transformation. This architecture is
supported by the intuition that same-direction transforma-
tions will apply set of similar changes to varying degrees.
For instance, transforming from class X to Y will likely
emphasize larger road and building footprints, although to
a lesser degree than in a transformation from class X to Z.
Therefore, we thought it appropriate that these the genera-
tor weights be shared among cycles. Similarly, the Tricycle-
GAN uses 2 discriminators, one for the lower consumption
class and one for the higher consumption class in each trans-
formation, as we believe the characteristics of what makes a
transformed image real or fake can be shared across classes.
Figure 2 shows the architecture of our TricycleGAN, which
takes into account the label inputs. In designing our Tri-
cycleGAN implementation to closely resemble that of the
binary CycleGAN, we create a model that scales with mul-
tiple classes, avoiding the increased computational require-
ments of training additional generator-discriminator pairs
for each additional image-transformation cycle.

Low Consumption, x

High Consumption, y
...... Path of Input x & class n’
= = = - Pathof Inputy &class n

- Yrec

N [

| —
|
| :
| :

™~ | - -
| ( N
! :

D, i : D,

J/ 1 . ]
1 .
| .
|

Inputs

Figure 2: Conditional CycleGAN (TricycleGAN) architec-
ture. The TricycleGAN architecture closely resembles that
of the binary CycleGAN, although the desired image trans-
formation cycle is specified by the additional inputs n and

n'.

4.3. Electricity Consumption Classification Net-
work

By subtracting the binary CycleGAN-generated images
from their corresponding input images, we create a database
of masks that transform images from one class to the next.
We then experiment with classifying these masks in order to
determine what level of binary classification accuracy (low
or high) could be achieved if we only used the mask trans-
formation as inputs and compared these results to two base-
lines: one that uses raw satellite imagery as training data,
and another other that does the same with nighttime light
measurements. As this classification task resulted in accu-
racies much higher than any we had been able to achieve
with either baseline classifier, we initialized a simple UNet
architecture that would transform a satellite image into a
mask containing features that encode the information nec-
essary to transition between classes. After training the UNet
to recreate this set of transformation masks, either the out-
put of the UNet, a image mask with the same spatial dimen-
sions as the input image, or the feature space representation
of the input image, taken after the last convolution layer in
the network, is fed into a multilayer perceptron (MLP) for
classification (we tested both methods to determine relative
efficacy). With the UNet weights held constant, the multi-
layer perceptron is trained using a simple cross entropy loss
between the actual and predicted image class labels. Figure
3 presents this network architecture.
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Figure 3: UNet and Simple CNN Architecture. The UNet
is trained to recreated the attention masks generated by the
binary CycleGAN; the recreated UNet masks and consump-
tion class labels are then used as inputs to train a multilevel
perceptron.

5. Results
5.1. Binary CycleGAN

Figure 4 presents the results from our binary CycleGAN
implementation. In transitioning from a low-consumption
image to a high-consumption one (top set of images), the
CycleGAN implements two primary changes: road and
building footprints are both enlarged and brightened. These
changes have the effect of making roads and buildings stand
in sharper contrast to background features. We believe these
results make intuitive sense, as the lighter roads in the trans-
formed images look to have a higher quality than roads in
the original one, indicating more development in the gen-
erated image, which usually corresponds to higher electric-
ity consumption. Similarly, tin roofs are typically seen as
higher-status home improvements, and making the upgrade
from a thatched roof to a reflective one likely parallels an
increase in electricity consumption for a particular house-
hold. A secondary change visible in transforming from low-
consumption to high-consumption is an increase in contrast
in green areas surrounding houses, roads, and various other
human developments. This increase in contrast has the ef-
fect of making cropland delineations in a larger pastoral
area more clear, giving the impression of higher level of
agricultural cultivation. Again, we find it realistic that more
visible signs of development coincide with higher levels of
electricity consumption. Transforming from the high con-
sumption class to the low consumption class (bottom set
of images) largely makes makes the inverse changes to the
input imagery: road and buildings footprints are dimmed
and made to blend in with their surroundings. These gen-
erated images on average look more rural than their high-
consumption counterparts.

High Mask

Fake High
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Fake Low Low Mask

Figure 4: Results from the binary CycleGAN. The first set
of transformations take a low-consumption image and trans-
form it into a high-consumption image; the second set of
image does the inverse. Left to right, the columns indicate
the original image, the transformed image, and the absolute
value of the transformed image minus the original image.

The third column in each binary CycleGAN transfor-
mation presented in Figure 4 shows the grayscale differ-
ence between the input and output images. The features
presents in these masks represent how specific features in
an input image must change once it undergoes a class-
transformation; as such, they contain the clearest insight
into what image characteristics are important in making a
classification decision about electricity consumption. Im-
portantly, these changes are local in nature and do not occur
on an image-wide scale: our model does not transform be-
tween image classes by increasing or decreasing an image’s
overall green hue, instead making specific adjustments to
particular features in the image input.

5.2. Conditional CycleGAN

Results for our conditional CycleGAN - the Tricycle-
GAN - exhibit similar image transformations to the those
generated by the binary CycleGAN. Figure 5 shows these
transformed images: a pink border indicates the input im-
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Figure 5: Conditional CycleGAN results. Images with a
pink boundary indicate the original input image; arrows
from this input image indicate the generated image in the
desired output class.

age, and black arrows show the direction of the condi-
tional transformation. On the up transformations, road
and building footprints are enlarged and brightened; down
transformations dim the same features. Comparing the
up and down transformations of medium consumption im-
ages shows these differences most clearly: generated high-
consumption images display more development and fea-
tures more consistent with those in urban settings, while
generated low-consumption images present the opposite.
Unfortunately, our results for same-direction transforma-
tion are not as differentiable. There seems to be little dif-
ference between medium-consumption images and a high-
consumption images if both images are generated from a
low-consumption input; the same hold for down transfor-
mations. There are a couple possible reasons why these
same-direction transformations aren’t as instructive as the
binary transformations. For one, there is significant vi-
sual similarity between periurban settings (generally with
residential electricity consumption quantities in line with
those for the medium-consumption class) and urban ones
(with consumption in line with estimates for the high-
consumption class), making it difficult for the TricycleGAN
model to extract a third consumption class with unique fea-
ture identifiers. Relatedly, our set of training images may
be too small to cleanly define distinctive transformations
among all three classes. We further experimented with
introducing the conditional label at multiple convolutional
layers in our TricycleGAN under the assumption that a lone
signal may get lost in the generation process, although re-
sults from this test were inconclusive as well.

5.3. Electricity Consumption Classification

Given the clarity of features presented in the binary Cy-
cleGAN masks, we hoped that recreating masks from an in-

CycleGAN Generated Mask

Figure 6: Mask Comparisons. Columns show the 1) Cy-
cleGAN generated masks and 2) the UNet recreated masks;
rows present the mask results for the 1) low-to-high class
transformation and 2) high-to-low class transformation.
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put image and a learned UNet architecture would allow for
high accuracy in our electricity consumption classification
network. Over 120 training epochs, we attained a maximum
classification accuracy using the mask recreation network
of 0.74; we were not able to outperform daytime image
and nighttime light classification baselines that respectively
achieved accuracies of 0.77 and 0.75, each with an identical
MLPs and training strategy. Changing the amount of im-
ages used to train the UNet mask generator had no effect on
the performance of the classifier, indicating that there is a
ceiling on the performance of the mask generator and that
it can be achieved with a minimum of 30% of the training
data. Neither stacking the UNet masks the satellite images
nor coupling the masks with the nighttime lights measure-
ments resulted in a greater increase in accuracy.

Figure 6 presents example CycleGAN and UNet masks:
as these two types of masks look highly similar in both ex-
amples, yet the sets of images achieve training accuracies of
0.95 and 0.74 respectively, we conclude that there must be
some information encoded in the binary CycleGAN trans-
formations that cannot be recreated using the trained UNet.
This information likely comes from the binary CycleGAN
knowing which unique generator to place the image into
given the image’s label. Our results lend credence to the
idea that there is a threshold around 0.75 that a classifier
can achieve with satellite imagery, utility-reported residen-
tial electricity consumption data, and a CycleGAN archi-
tecture. Our results also indicate that it is likely that the
CycleGAN modifies the same image features in its transfor-
mations that a MLP extracts during classification of satellite



imagery.

6. Conclusions

This report presents multiple methods of using satellite
imagery and computer vision to explain residential electric-
ity consumption in Kenya; as best we can tell, we present
the first application of generative adversarial networks to
the topics of understanding and predicting electricity con-
sumption levels. Initially, we develop a binary Cycle-
GAN that learns transformations between a low consump-
tion class with monthly residential electricity consumption
between 3 kWh/month and 30 kWh/month, and a high
consumption class with monthly consumption between 90
kWh/month and 1000 kWh/month. Results from this first
experiment reveal that the image transformations focus on
altering building and road footprints in transitioning be-
tween image classes: in generating high consumption im-
ages, roads and buildings are brightened and enlarged; these
same features are dimmed when generating low consump-
tion images. Intuitively, these results indicate that more vis-
ible forms of development coincide with increased levels
of electricity consumption. Roads with a higher amount
of contrast to their surroundings typically indicate higher
road quality, while more reflective buildings are represen-
tative of transitions from thatched roofs to tin ones; these
findings dovetail with on-the-ground experiences about how
sub-Saharan settings change with economic growth, devel-
opment that also corresponds to higher electricity consump-
tion. Compared to an approach that answers this question
by analyzing classification heatmaps from an multilevel per-
ceptron that discriminates between two levels of electric-
ity consumption, a strategy which would only highlight the
portions of an image that are important in making a classi-
fication decision, our generative approach visually presents
exactly what feature transformations are required in trans-
forming between classes.

Unfortunately, results for our conditional model are less
conclusive. Our TricycleGAN has trouble differentiating
between same-direction transformations, i.e. transforming a
low-consumption image into a medium-consumption class
by giving the network one target label and transforming
the same image into a high-consumption class by giving
the network a different label. We believe reasons for this
model performance include high levels of visual similar-
ity between images in periurban and urban settings that
makes distinction between the medium-consumption and
high-consumption classes difficult; we also think we lack
the necessary training data for this more-challenging image
transformation problem.

We also came to the conclusion that using recreated
masks from the binary CycleGAN would not allow us to
achieve an increase in electricity consumption classifica-
tion performance. We acquired these recreated masks by

subtracting input images from their transformed outputs to
train a UNet that extracts relevant class-transformation fea-
tures from unseen satellite imagery; using the extracted fea-
tures, we then train a multilevel perceptron on the binary
classification task of predicting high or low electricity con-
sumption. Our recreated mask-trained network is able to
reach a similar level of performance — but not improve upon
— two baseline classifiers that use either raw satellite im-
agery or nighttime light measurements. We attribute similar
performances among the baseline satellite imagery network
and our recreated mask network to the fact that both archi-
tectures likely use the same road and building features for
classification.

Going forward, it remains an open question about what
increases in electricity consumption prediction performance
we are able to achieve using only satellite imagery. In in-
specting our training data, we regularly encounter images
which have visual features inconsistent with that image’s
consumption class; for instance, a number of highly ru-
ral settings contain one or two buildings that place corre-
sponding images in a high consumption class, even though
a feature-based classification places these image in a low-
consumption bin with other images they more closely re-
semble. Our next approach will likely involve semi-
supervised learning of intermediary tasks for electricity
consumption prediction using additional data sources, such
as labeled building and road footprints as specified by Open
Street Map. By explicitly learning these features before
training a feature classifier, we will disconnect the feature
learning from any built-in information regarding the image
class, as was the case in our binary CycleGAN mask recre-
ation. Moreover, we are skeptical about using generated
images to help with classification. Generated images can
help a network become more generalizable, as additional
images will expand the distribution of model inputs; given
the already wide distribution of satellite images and corre-
sponding consumption values, we don’t believe this will be
a problem for future classifiers we develop.
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